Coronavirus, il vaccino è un cerotto
Coronavirus, il vaccino è un cerotto
Coronavirus, il vaccino è un cerotto -
Coronavirus, il vaccino è un cerotto
Il gruppo
dell'Università di Pittsburgh è lo stesso che ha messo a punto il vaccino per
la Sars. Tra loro, l'italiano Andrea Gambotto, che abbiamo intervistato.
"Sui topi funziona, la Fda ci autorizzi a passare all'uomo". In 5
mesi si potrebbe cominciare la produzione
Una
piccola puntura - anzi, 400 micropunture erogate da sottilissimi aghetti
disposti su un cerotto largo 1,5 centimetri - sul braccio o sulla spalla, e
l'immunità al virus SARS-CoV-2 può svilupparsi entro due settimane, per
raggiungere entro altre 3-4 settimane un livello di anticorpi sufficiente a
contrastare in modo decisivo il virus. E' questo il vaccino sperimentale -
"PittCoVacc", il primo descritto in uno studio peer-reviewed -
sviluppato da ricercatori della School of Medicine dell'Università di
Pittsburgh, centro di eccellenza nella lotta alle malattie emergenti. I
ricercatori - tra cui l'italiano Andrea Gambotto e Louis Falo di UPMC
(University of Pittsburgh Medical Center) - sono gli stessi che nel 2003 hanno
realizzato il primo vaccino in assoluto contro un coronavirus emergente (in
quel caso si trattava della SARS, e quel vaccino non fece in tempo ad essere
sperimentato sull'uomo perché la SARS si eclissò da sola) e hanno poi studiato
nel 2014 un vaccino per un altro coronavirus, la MERS.
La stessa proteina chiave per
Sars e per l'attuale Coronavirus
"Con
la SARS già nel 2003 avevamo identificato la proteina chiave che dobbiamo usare
come target anche per il nuovo SARS-Cov-2: la proteina "spike",
ovvero quella che forma le punte (in realtà più simili a minuscoli ombrelli) di
cui è composta la corona del virione e che serve al virus per entrare nelle
cellule legandosi ai loro recettori. La proteina "spike" è una specie
di chiave che il virus usa per entrare nelle cellule: se blocchi quella chiave,
puoi fermare il virus", spiega Gambotto a Repubblica. "Il successivo
lavoro sulla MERS ci ha permesso poi di trovare la via più efficace per
somministrare il vaccino, ovvero i microaghi". I 400 microaghi sono lunghi
0,5 millimetri e larghi 0,1 millimetri, sono fatti di carbossimetilcellulosa
(polimero derivato dalla cellulosa) e quando entrano nella pelle si sciolgono
liberando la proteina "spike". "A questo punto il sistema
immunitario si rende conto che è un corpo estraneo al nostro organismo e inizia
a produrre gli anticorpi contro di essa -
spiega Gambotto - quando poi la persona vaccinata viene infettata dal
virus, gli anticorpi ingloberanno rapidamente le particelle del virus e
bloccheranno l'infezione".
La pelle prima barriera
La
scelta di questo sistema di somministrazione ha a che fare con il fatto che la
pelle è la prima barriera del nostro corpo contro virus e batteri. "E'
come la muraglia di un castello, e proprio per questo è ben presidiata dal
sistema immunitario: la pelle è uno dei posti migliori per generare una
risposta immunitaria rilevante, superiore a quella che si ha iniettando nel
muscolo - sottolinea Gambotto - un altro
vantaggio è che se si inietta un vaccino nel muscolo, questo si diluisce in
tutto il corpo, quindi per generare una risposta forte serve una maggiore
quantità di vaccino. Invece l'iniezione attraverso la pelle tramite microaghi è
localizzata: c'è una concentrazione del vaccino molto più elevata, tutte le
cellule immunitarie vanno ad attaccare l'invasore e basta una quantità minore
di vaccino per dare l'immunità".
Minore quantità di vaccino
La
minore quantità di vaccino - ne serve
tra 1/5 e 1/10 di quello che servirebbe con una classica iniezione con siringa
- richiesta è un vantaggio soprattutto quando bisogna produrre quantità enormi
di vaccino per rispondere all'emergenza di una pandemia. E il particolare
sistema di iniezione tramite i microaghi è un altro punto di forza del vaccino
studiato a Pittsburgh: "I microaghi proteggono la proteina spike,
liberando i medici dalla necessità di conservare il vaccino attraverso la catena
del freddo - sottolinea Gambotto - questo significa che il vaccino è più
facilmente trasportabile anche nelle zone più povere del pianeta".
I
risultati sperimentali sui topi sono promettenti: un test dopo due settimane
dall'iniezione del vaccino mostra che i topi hanno già sviluppato anticorpi
specifici contro il Sars-Cov-2. "Gli anticorpi maturano progressivamente,
diventano più potenti e selettivi contro il virus, e dopo 5-6 settimane dalla
prima iniezione se ne sviluppa una quantità sufficiente ad arrestare la
malattia - spiega Gambotto - naturalmente dovremo condurre la sperimentazione
clinica per assicurarci che quanto abbiamo visto nei topi possa replicarsi
anche nell'uomo: entro 1-2 mesi - a seconda della celerità della FDA americana
nell'autorizzarci - dovremmo essere in grado di far partire la sperimentazione
clinica, che - magari limitata agli studi di fase 1, vista l'emergenza mondiale
della pandemia - potrebbe concludersi entro altri 2-3 mesi. La sperimentazione
clinica ci aiuterà a calibrare la dose giusta di vaccino che può essere
efficace con l'uomo. Se questa fase si concluderà con successo, il vaccino
potrebbe essere pronto per la produzione industriale entro 5 mesi da ora".
Fonte: Repubblica on line


Nessun commento:
Posta un commento